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Abstract

Current predictors of speech intelligibility are inadequate for understanding and predicting speech confusions caused by acoustic
interference. We develop a model of auditory speech processing that includes a phenomenological representation of the action of the
Medial Olivocochlear efferent pathway and that is capable of predicting consonant confusions made by normal hearing listeners in
speech-shaped Gaussian noise. We then use this model to predict human error patterns of initial consonants in consonant–vowel–
consonant words in the context of a Dynamic Rhyme Test. In the process we demonstrate its potential for speech discrimination in noise.
Our results produced performance that was robust to varying levels of stationary additive speech-shaped noise and which mimicked
human performance in discrimination of synthetic speech as measured by the Chi-squared test.
� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

Current models of speech intelligibility are inadequate
for making predictions of speech confusions caused by
acoustic interference for normal-hearing listeners. The
Articulation Index (French and Steinberg, 1947; ANSI,
1969) and related measures, STI (Houtgast et al., 1980),
and SII (ANSI, 1997) characterize hearing in a manner
geared to the task of predicting speech intelligibility. But
such measures only predict average speech intelligibility,
not error patterns, and they make predictions for only a
limited set of acoustic conditions (linear filtering, reverber-
ation, and additive noise).
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The performance of current speech recognition systems
using front-ends such as the Mel-Filter Bank (MFB),
Mel-Filtered Cepstral Coefficient (MFCC), and the Ensem-
ble Interval Historgram (EIH) models degrades signifi-
cantly in the presence of noise. At the same time
however, human performance on speech recognition is
more robust to noise (Lippmann, 1997; Sroka and Braida,
2005). Lippman suggests that this human–machine
performance gap can be reduced by improving low-level
acoustic–phonetic modeling, improving robustness with
noise and channel variability, and more accurately
modeling spontaneous speech.

This work is inspired by the desire to understand, pre-
dict, and mimic human speech confusions caused by acous-
tic interference. Our long-term goal is to formulate a
matching operation, with perception-related rules of inte-
gration over time and frequency at its core, in the context
of human processing of degraded speech, but in this paper
we concentrate on separating the back-end development
from the front-end. Our approach is to attempt to reduce
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the influence of cognitive and memory factors while pre-
serving the complex acoustic cues that differentiate
diphones. Hence we attempt to tune the parameters of
the peripheral auditory model in as much isolation as pos-
sible by reducing the effect of the back-end system.

In this paper, we focus on developing a model inspired
by the non-linear efferent feedback and signal processing
of the human auditory periphery, which is thought to aid
speech recognition in noise environments. Specifically we
develop our model to attempt to match and predict human
confusions of initial consonants in speech-shaped additive
Gaussian noise. We take current knowledge about medial
olivocochlear (MOC) efferents and use it to create a model
that can explain human performance and behavior. Other
mechanisms such as neural adaptation at levels at and
higher than the auditory nerve or the use of differing-rate
(high, medium, and low) spontaneous-rate fibers may
potentially also explain human confusions and perfor-
mance. However the need for high level adaptation
depends on the processing done at the level of the auditory
nerve, and such theories are also speculative in nature.
Instead of developing and examining all possible theories
in detail (which would require much more work than is
possible in the scope of a single paper such as this), we
focus on the development and examination of a single
MOC-based theory to explain human performance in
noise.

This paper is divided into four sections. In Section 2 we
discuss the background, focusing on MOC efferents; in Sec-
tion 3 we describe our model. In Section 4 we fine-tune the
model and match it to human performance. In Section 5 we
discuss the implications of our work. Finally in Section 6
we summarize and discuss possible future research.

2. Background: MOC efferents

Mounting physiological data exists in support of the
effect of MOC efferents on the mechanical properties of
the cochlea and, in turn, on signal properties at the audi-
tory nerve level, in particular when the signal is embedded
in noise. MOC efferent activity is believed to reduce outer
hair cell (OHC) motility and change OHC shape, resulting
in increased basilar membrane stiffness, which in turn
inhibits inner hair cell (IHC) response in the presence of
noise. This paper develops this picture into a closed-loop
model of the peripheral auditory system, a model that
adaptively adjusts its cochlear mechanics based on the pro-
cessed noise energy level. The next few sections summarize
recent work related to MOC efferents.

2.1. Morphology and physiology

Detailed morphological and neurophysiological descrip-
tion of the MOC efferent feedback system are available
(e.g., Gifford and Guinan, 1983; Guinan, 1996; Kawase
and Liberman, 1993; Liberman, 1988; Liberman and
Brown, 1986; May and Sachs, 1992; Warr, 1978; Winslow
and Sachs, 1988). MOC efferents originate from neurons
medial, ventral and anterior to the medial superior olivary
nucleus (MSO), have myelinated axons, and terminate
directly on OHCs. Medial efferents project predominantly
to the contralateral cochlea (the innervation is largest near
the center of the cochlea) with the crossed innervation
biased toward the base compared to the uncrossed innerva-
tion (e.g., Guinan, 1996). Roughly two-thirds of MOC eff-
erents respond to ipsilateral sound, one-third to
contralateral sound, and a small fraction to sound in either
ear. MOC efferents have tuning curves that are similar to,
or slightly wider than, those of auditory nerve (AN) fibers
(e.g., Liberman and Brown, 1986), and they project to dif-
ferent places along the cochlear partition in a tonotopical
manner. Finally, medial efferents have longer latencies
and group delays than AN fibers. In response to tone or
noise bursts, most MOC efferents have latencies of 10–
40 ms. Group delays measured from modulation transfer
functions are much more tightly clustered, averaged at
about 8 ms (Gummer et al., 1988).

Current understanding of the functional role of the
MOC efferent feedback mechanism is incomplete. A few
suggestions have been offered, such as shifting of sound-
level functions to higher sound levels, resolution of tran-
sient sounds in a continuous masker, or preventing damage
due to intense sound (e.g., Guinan, 1996). One speculated
role, which is of particular interest for this work, is a
dynamic regulation of the cochlear operating point
depending on background acoustic stimulation, resulting
in robust human performance in perceiving speech in a
noisy background (e.g., Kiang et al., 1987). Several neuro-
physiological studies support this role. Using anesthetized
cats with noisy acoustic stimuli, Winslow and Sachs
(1988) showed that by stimulating the MOC nerve bundle
electrically, the dynamic range of discharge rate at the
AN is partly recovered. Measuring neural responses of
awake cats to noisy acoustic stimuli, May and Sachs
(1992) showed that the dynamic range of discharge rate
at the Anterior Ventral Cochlear Nucleus (AVCN), which
is tightly correlated to the rate of the AN, is only moder-
ately affected by changes in levels of background noise.
Both studies indicate that MOC efferent stimulation plays
a role of regulating the AN fiber response in the presence
of noise.

2.2. Psychophysics: evidence for efferent involvement in noise

A few behavioral studies indicate the potential role of
the MOC efferent system in perceiving speech in the pres-
ence of background noise. Dewson (1968) presented evi-
dence that MOC lesions impair the abilities of monkeys
to discriminate the vowel sounds [i] and [u] in the presence
of masking noise but have no effect on the performance of
this task in quiet. More recently, Giraud et al. (1997), and
Zeng et al. (2000) showed that human subjects who have
undergone a vestibular neurectomy (presumably resulting
in a reduced MOC feedback) exhibit degraded phoneme
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perception when the speech is presented in a noisy back-
ground. These speech reception experiments may be con-
taminated by surgical side effects such as uncertainties
about the extent of the lesion and possible damage to
cochlear elements. Thus the results are somewhat contro-
versial. Some studies (e.g. Scharf et al., 1997) showed little
or no perceptual effect in situations where one might expect
efferents to play a role. Ghitza (2004) explored the effects of
the MOC efferent system by presenting combinations of
speech and noise in various configurations (gated/continu-
ous, monaural/binaural). His results showed a gated/con-
tinuous difference analogous to the ‘‘masking overshoot”
in tone detection: the results with gated noise were worse
than the results with continuous noise. These results were
similar to findings by Ainsworth and Meyer (1994), Ains-
worth and Cervera (2001), and Cervera and Gonzalez-
Alvarez (2007) that also showed lower performance of
gated noise than continuous noise. Ghitza suggested these
results could be due to efferent inability to activate quickly
for gated conditions, but cautioned that the results could
also be due to high-order auditory and cognitive mecha-
nisms such as those observed in the fusion of perceptual
streams. Despite the concerns in all of the above studies,
these results can be interpreted to support the hypothesis
of a significant efferent contribution to initial phone dis-
crimination in noise.

2.3. Recent work in modeling

Ghitza et al. (2007) presented some of our preliminary
findings and work, focusing on model performance on a
speech identification task. In this paper we continue the
development of ideas presented there, with a focus on mim-
icking human performance on identification of initial con-
sonants in consonant–vowel–consonant tokens in noise.

In tandem with our work, Ferry and Meddis (2007) have
developed a similar model based on Meddis’ Dual Reso-
nance Nonlinear (DRNL) model of the auditory system.
In that work, Ferry and Meddis focused on matching
model parameters to basilar membrane (BM) response,
AN activity, and compound action potential (CAP)
responses measured in various animal studies with center
frequencies (CF) between 3550 and 20 kHz. One of the
challenges in doing this is that much more data exists for
higher frequency fibers while not much if any exists for fre-
quencies below 8 kHz, ranges that are essential for speech
perception. Furthermore, all AN and CAP measurements
are for various non-human mammals and may not match
human data. Since we were more interested in the fre-
quency range relevant to speech and human speech percep-
tion, our approach is instead to model the known
biological components and focus on tuning our system
parameters to match human speech confusions. We also
chose to use Goldstein’s Multi Band Pass Non Linear
(MBPNL) model of nonlinear cochlear mechanics
(Goldstein, 1990) instead of using the DRNL model. Both
MBPNL and DRNL models mimic cochlear mechanics,
with ‘‘tip” and ”tail” paths that control the non-linear
CF amplification of a signal and the filter width respec-
tively. However, the DRNL model is a linear mixing
model: the nonlinear tip compression happens before sum-
mation with the tail path of the model. The MBPNL model
is a nonlinear mixing model: the nonlinear tip compression
happens after summation with the tail path, resulting in a
nonlinear interaction. This nonlinear mixing allows the
MBPNL model to better mimic the measured nonlinear
within-filter synchrony and rate suppression of two tones
(in particular low frequency ‘‘tail” tone suppression of
‘‘tip” tones near CF) than linear-mixing models (for a fur-
ther comparison of the DNRL and MBPNL models see
Goldstein, 1990). This difference could be very important
for the processing of complex signals such as speech, where
multiple harmonics are found within an auditory filter.
Despite these differences in approach and model develop-
ment, our work, like Ferry and Meddis’s, exploits the cur-
rent popular theory of the role of the MOC efferent system
and demonstrates performance gains in noise.

3. Model overview and qualitative evaluation

In this section we give an overview of our model and
qualitatively demonstrate the ability of our closed-loop
(with efferent feedback) model to produce spectrographic
displays of noisy speech that are more consistent with dis-
plays of speech in quiet than are displays produced by
open-loop (without efferent feedback) models. In Section
4 we will provide a quantitative analysis of our model.

We begin by describing Goldstein’s Multi Band Pass Non
Linear (MBPNL) model of nonlinear cochlear mechanics
which is a major component of our overall model. Then we
describe our open-loop model based on this MBPNL
cochlear filterbank. Finally we describe our closed-loop
model which adjusts the parameters of the MBPNL model
depending on the efferent response to noise.

3.1. MBPNL cochlear filterbank

In this subsection, we review and discuss Goldstein’s
MBPNL model of nonlinear cochlear mechanics
(Goldstein, 1990). This model changes its gain and band-
width with changes in the input intensity, in accordance
with observed physiological and psychophysical behavior.

The MBPNL model is shown in Fig. 1. The lower path
(H1/H2) is a compressive nonlinear filter that represents
the sensitive, narrowband compressive nonlinearity at the
tip of the basilar membrane tuning curves. The upper path
(H3/H2) is a linear filter (the expanding function preceded
by its inverse compressive function results in a unitary
transformation) that represents the insensitive, broadband
linear tail response of basilar membrane tuning curves. The
gain parameter (GAIN) controls the gain of the tip of the
basilar membrane tuning curves, and is used to model the
inhibitory efferent-induced response in the presence of
noise. For the open-loop MBPNL model GAIN is set to
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Fig. 1. MBPNL filterbank. A parameter GAIN controls the gain of the tip of the basilar membrane tuning curves. To best mimic psychophysical tuning
curves of a healthy cochlea in quiet, the tip gain is set to GAIN = 40 dB (Goldstein, 1990).
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40 dB, to best mimic psychophysical tuning curves of a
healthy cochlea in quiet (Goldstein, 1990).

The ‘‘iso-input” frequency response of an MBPNL filter
at CF of 3600 Hz with various tip gain settings is shown in
Fig. 2. For an input signal s(t) = Asin(2pfot), with A and fo

fixed, the MBPNL behaves as a linear system with a fixed
‘‘operating point” on the expanding and compressive nonlin-
103

10-2

100

102

Gain=40

Frequency (Hz)

O
ut

pu
t A

m
pl

itu
de

 / 
In

pu
t A

m
pl

itu
de 120dBSPL

100dBSPL
80dBSPL
60dBSPL
40dBSPL

103

10-2

100

102

Gain=20

Frequency (Hz)

O
ut

pu
t A

m
pl

itu
de

 / 
In

pu
t A

m
pl

itu
de 120dBSPL

100dBSPL
80dBSPL
60dBSPL
40dBSPL

Fig. 2. MBPNL frequency responses Iso-input frequency responses of an MBP
upper-left, clockwise: GAIN = 40, 30, 20 and 10 dB. Upper-left corner (Gain =
varied from 40 dB SPL to 120 dB SPL.
ear curves, determined by A. For a given A, a discrete chirp
signal with a slow linear ramping frequency was presented
to the system in order to measure the non-linear frequency
response of the system to a sinusoid at each frequency.
Changes in fo occurred only after the system reached
steady-state, for a proper gain measurement. The frequency
response for the open-loop MBPNL model is shown at the
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NL filter (at CF of 3641 Hz) for different values of GAIN parameter. From
40 dB) is for healthy cochlea in quiet (Goldstein, 1990). Input sinusoids are
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Fig. 3. Our model of the Inner Hair Cell (IHC). The model is fed the
output from the cochlear filter bank. Each cochlear channel is processed
by the same half-wave rectification followed by a low-pass ‘‘Johnson”

filter. The ‘‘Johnson” filter is a 2nd order lowpass filter with poles at 600 Hz
and 3000 Hz. A is chosen to give the filter a unity gain in the pass-band.
The combination of the two components produces an output that reflects
nerve firing patterns while also mimicking loss of synchrony found in
humans and cats as the CF of the cochlear filters is increased.
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upper-left corner (i.e. for GAIN = 40 dB). Fig. 2 shows the
iso-input frequency response of the system for different val-
ues of input SPL level. As the input level increases the output
gain drops and the bandwidth increases, in accordance with
Cochlear 
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Half-Wave 
Rectifier

Middle Ear Cochlear 
Filter
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Fig. 4. Overview of one channel of the front-end model without efferent feedbac
MBPNL cochlear filter. The output of the filter is followed by a half-wave rect
represent the IHC and nerve. The DRW, corresponds to the spontaneous rate a
smoothed with a trapezoidal window with 1 ms ramps that overlap to find th

Fig. 5. Simulated IHC response to diphone/ja/ (250 ms), produced by an open
chosen to be 130 dB to correspond roughly with the human threshold of pain
65 dB.
physiological and psychophysical behavior (Glasberg and
Moore, 1990). As the gain increases, the distance between
the maximum and minimum peaks, which corresponds to
inputs of 40 dB SPL and 120 dB SPL in Fig. 2, increases.
In our closed-loop model, the tip GAIN parameter is
adjusted based on the efferent response, which in turn is cal-
culated based on the amount of noise present. For our exper-
iments, we limited the range that GAIN can vary, based on
biological observations. The adjustment of GAIN is
described in more detail in Section 3.3.
3.2. Open-loop model with MBPNL filters

Our baseline open-loop model is displayed in Fig. 4. The
first component is a middle ear module that mimics the
high-pass frequency response of the middle ear. It consists
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Fig. 6. Example of efferent gain regulating noise allowed above the DRW rate limiter. (a) Shows the efferent GAIN profile per cochlear channel for three
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of a first-order high-pass filter jHðf Þj2 ¼ A2 f 2

f 2þf 2
0

, with
A = .0014 and f0 = 1000 selected to approximate a gain
of 0 dB at 1 kHz. The cochlear model is comprised of a
bank of overlapping cochlear channels uniformly distrib-
uted along the ERB scale (Glasberg and Moore, 1990), four
channels per ERB. Each cochlear channel comprises an
MBPNL filter followed by a model of the IHC and nerve.
Our model of the IHC is composed of a half-wave rectifier
followed by a low-pass ‘‘Johnson” filter with poles at
600 Hz and 3000 Hz (see Fig. 3). The half-wave rectifier con-
verts the input waveform of a cochlear channel into a nerve
firing response. The filter mimics the loss of synchrony found
in cats as the CF of the cochlear filters is increased (as
described by Johnson, 1980); ie as CF increases, the band-
width of the cochlear filters increase and information on
the fine structure of the waveform is lost.

The dynamic range of the simulated IHC and nerve
response is restricted – from below and above – to a
‘‘dynamic-range window” (DRW), representing the
observed dynamic range at the AN level (i.e. the AN
rate-intensity function); the lower bound and upper bound
of the DRW represent the spontaneous nerve firing rate
and saturation firing rate, respectively. The signal is then
smoothed using overlapping N-ms (N is a variable that
was adjusted and is typically set to 8, 10, or 12) trapezoidal
windows with 1 ms cosine-squared ramps to find the short-
term average nerve firing rate.

Fig. 5 provides a spectrographic display of the output of
the open-loop system. The simulated IHC response is dis-
played for noise intensity levels of 70, 60, and 50 dB SPL
and for SNR values of 20, 10, 5, and 0 dB (values that were
used in the experiments discussed in Section 4). GAIN is
40 dB and is held constant for all SNR and noise levels.
The figure contains a 3-by-3 matrix of images; the columns
represent the intensity of the background noise. The rows
represent SNR. Each image represents the responses to
the diphone/ja/ (duration of 250 ms) spoken by a male
speaker, with DRW = 65 dB. The upper bound of the
DRW was chosen to be 130 dB to correspond roughly with
the human threshold of pain. The lower bound was chosen
to minimize our performance metrics, to best match human
(discussed in Section 4), and is 65 dB. Large differences are
observed across varying noise intensity and SNR levels.
Note that for the DRW we chose, at 50 dB noise intensity
much of the speech energy is not present in the response.
Had the DRW range been shifted lower, more of the
speech energy of the 50 dB noise intensity level would have
been visible but also more noise. It proved impossible to
find a DRW position that provides a consistent display
at the output, across rows and columns.
3.3. Closed-loop model with efferent-inspired feedback

The closed-loop, efferent-inspired, MBPNL model is
shown in Fig. 7. We introduce a CF dependent feedback
mechanism which controls the GAIN of each MBPNL
channel according to the intensity of sustained noise at that
frequency band. Specifically, the GAIN parameter in Fig. 7
was adjusted to allow a prescribed amount of noise
through each channel’s DRW. As the lower bound of the
DRW is increased, the tip-gain parameter needs to be
increased to maintain the same amount of noise through
each channel’s DRW. Hence the choice of the lower bound
affects the level of the GAIN.

Fig. 6 illustrates an example of how the efferent gain is
adjusted to regulate the noise above the lower bound of
the DRW rate limiter. In this figure, three separate
speech-shaped Gaussian noise conditions are considered.
The GAIN per channel is selected for each noise condition
– 50 dB SPL (black dotted line), 60 dB SPL (grey dashed
line), and 70 dB SPL (solid lighter grey line) noise – in
the absence of speech. The GAIN for a given noise condi-
tion tapers off below 1 kHz, reflecting the decline in the
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number of MOC efferent nerves innervating lower fre-
quency channels.

To determine the value of GAIN, the average noise
energy per channel (with speech absent) is compared across
noise conditions. If the resulting energies are not within a
specified desired difference, the efferent gains are then iter-
atively adjusted and the resulting energies per condition are
recomputed. This process is repeated until the average
noise energies per channel are within a desired difference
of each other. For our studies a difference of 0.1% was tol-
erated. As an example, when the target average noise
Fig. 8. Simulated IHC response to diphone/ja/, produced by the efferent-insp
Output of each of the 96 MBPNL filters is normalized to a fixed dynamic ran
energy per channel is 2 dB above the lower bound of the
DRW, the output of the MBPNL filters for our model
yields a response rate with energy per channel that fit the
profile in Fig. 6b.

This adjustment of the GAIN parameter has several
consequences. Besides making the energy of the noise at
the output of each filter more consistent, it also affects
the properties of each filter. The general effect is that loud
noises reduce the non-linear amplification of small ampli-
tude sounds while weak noises maintain the larger amplifi-
cation of small amplitude sounds. Hence the overall effect
ired closed-loop MBPNL. DRW is same as in open-loop MBPNL mode.
ge.
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of the efferent system in our model is to amplify small
amplitude components of the speech stimulus by an
amount that depends on the noise level. This point is illus-
trated in more detail in Fig. 2. In Fig. 2, the upper-left
panel represents the nominal response (i.e. in quiet), with
GAIN set to 40 dB. In this quiet condition, weaker ampli-
tude sounds such as the 40 dB SPL sound are amplified
greatly (in this case roughly 20 dB more) relative to louder
sounds such as the 120 dB SPL stimulus. By increasing the
efferent response in noise, we reduce the GAIN and the
MBPNL response to weaker stimuli such as the 40 dB
SPL tone (and background noise), as shown in the lower
right pane of Fig. 2 where the GAIN parameter is set to
10 dB. Hence for high energy tone stimuli the MBPNL
response is hardly affected, while the response for low
energy stimuli (e.g. 40 or 60 dB SPL signals) is reduced
by some 30 dB in the presence of noise.

Fig. 8 shows the spectrographic displays of the closed-
loop MBPNL model. The DRW is set to 65 dB, with its
position fixed at the same location as in the open-loop
MBPNL model. The rate response of each MBPNL chan-
nel at the output of the DRW is stretched to the full
dynamic range, i.e. the ouput of the IHC is proportionally
stretched such that the minimal response rate of the signal
after DRW clipping is stretched to the spontaneous level
and the maximal rate of the signal after DRW clipping is
stretched to the saturation level. The motivation for nor-
malizing the IHC output stems from neurophysiological
studies on anesthetized cats with noisy acoustic stimuli
(Winslow and Sachs, 1988)2. In these studies, Winslow
and Sachs show that, by stimulating the MOC nerve bun-
dle electrically, the dynamic range of discharge rate at the
AN is recovered. Due to the nature of the noise-responsive
feedback, the background noise is largely eliminated for all
SPL � SNR conditions. Unfortunately some of the energy
of the/j/ and higher vowel formants is also reduced. At a
given SNR, displays of processed noisy speech, with
stretching, are consistent across dB SPL noise level (rows
in Fig. 8).

4. Model tuning and quantitative evaluation

As discussed in Section 1, our long-term objective is to
predict consonant confusions made by normally-hearing
listeners, listening to degraded speech. Our prediction
engine comprises the efferent-inspired peripheral auditory
model followed by a template matching operation. The
extent to which this engine is an accurate model of auditory
perception will be measured by its ability to predict conso-
nant confusions in the presence of noise. This paper, how-
ever, focuses on the task of finding the parameters of the
first stage with a minimal interference of the second.
2 Concurring with this observation are measurements of neural
responses of awake cats to noisy acoustic stimuli, showing that the
dynamic range of discharge rate at the AN level is hardly affected by
changes in levels of background noise (May and Sachs, 1992).
Ideally, to eliminate unwanted interaction between
stages, errors due to template matching should be reduced
to zero. In reality we could only try to minimize interaction
by taking the following three steps: (1) we use the simplest
possible psychophysical task in the context of speech per-
ception, namely a binary discrimination test. In particular,
we use Voiers’ Diagnostic Rhyme Test (DRT) (1983) which
presents the subject with a two alternative forced choice
between two alternative CVC words that differ in their ini-
tial consonants. Such a task minimizes the influence of cog-
nitive and memory factors while maintaining the complex
acoustic cues that differentiate initial diphones; (2) we use
the DRT paradigm with synthetic speech stimuli. An
acoustic realization of the DRT word-pairs was synthe-
sized so that the target values for the formants of the vowel
in a word-pair are identical, restricting stimulus differences
to the initial diphones; and (3) we use a ‘‘frozen speech”

methodology (e.g. Hant and Alwan, 2003): the same acous-
tic speech token is used for training and for testing, so that
testing tokens differs from training tokens only by the
acoustic distortion.

These three steps presumably result in a reduction in the
number of errors induced by the template matching. Recall
that a template-match operation comprises measuring the
‘‘distance” of the unknown token to the templates, and
labeling the unknown token as the template with the smal-
ler distance. Hence, template matching is defined by the
distance measure and the choice of templates. As a distance
measure we use the mean- squared-error. This is an effec-
tive choice here because: (1) by using synthetic speech stim-
uli, the identical target values of the vowel formants for the
two words results in zero error in time–frequency cells
associated with the final diphone, and (2) by using fro-
zen-speech stimuli, a distortion in a given time–frequency
cell is generated locally (by noise component within the
range of the cell) and is independent of noise at other cells.

In the rest of this section, we discuss the results of the
human DRT tests, the DRT mimic, and our tuning of
the model.

4.1. Human DRT

For the human DRT, six different subjects with normal
hearing participated and were presented a DRT based on
synthetic speech. One hundred and ninty two DRT
diphones were generated with HLsyn, a modification of
the Klatt synthesizer, and organized according to 96 word
pairs (as per requirements for the DRT task), along four
vowel quadrants (High-Front, High-Back, Low-Front,
and Low-Back), and six acoustic dimensions (voicing,
nasality, sustention, sibilation, graveness, and compact-
ness). Noise was created by passing white noise through a
linear filter with speech-shaped transfer function, which
was obtained by averaging long-time Fourier power den-
sity spectrums for continuous speech across a large number
of speakers (see Dunn and White, 1940). This noise was
added to each word to obtain test tokens at various
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presentation levels and SNR: 70 dB, 60 dB, and 50 dB SPL
and 10 dB, 5 dB, and 0 dB SNR (levels were calculated
based on rms values). Words in the database are divided
into ‘‘runs” of 64 word-pairs, and the duration of one
run is limited to about 3 min (to avoid fatigue). Three runs
of 64 word-pairs make up a session which covers all 192
words in one repetition of one noise condition. Data for
each noise condition was collected in four repetitions, with
the noise condition and repetition number randomized,
and with the same spoken token and a different realization
of the noise used in each session. After being trained with
feedback, humans performed the DRT task without feed-
back using Sennheiser HD580 earphones in a sound booth
with double-walls made by the Industrial Acoustics Corp.

Human performance is evaluated based on percent cor-
rect responses using Voiers’ DRT paradigm, and scores are
broken down according to the DRT acoustic–phonetic
dimensions of voicing, nasality, sustension, sibilation,
graveness, and compactness. Knowledge about the acoustic
correlates of the acoustic–phonetic dimensions provides
diagnostic information about temporal representation of
speech (for example the longer in duration continuant vs.
the abrupt obstruent consonant of the sustention dimen-
sion), while the vowel quadrant identity provides informa-
tion about the frequency range (i.e. location of the
formants in action). Hence, human error patterns can pro-
vide a fair amount of information about the nature and
patterns of the phonetic confusions.

Human performance (measured by the number of errors
divided by total number of presentations) over all 9 SPL
and SNR conditions with synthetic speech is shown in
Fig. 9 (with a summary of results displayed in Table 1).
Here, the abscissa marks the six acoustic dimensions: voic-
ing, nasality, sustention, sibilation, graveness and compact-
ness (denoted VC, NS, ST, SB, GV and CM, respectively).
The ‘‘+” sign stands for attribute present (such as the voic-
ing present in the/d/ in daunt) and the ‘‘-” sign for attribute
absent (such as in the initial unvoiced/t/ in taunt). As one
can observe in Fig. 9, overall, as SNR decreases, human
performance decreases. For synthetic speech, average
human errors were within 2% of each other as SPL varied
and SNR was held constant (i.e. the rows of Fig. 9). Sus-
tension was the dimension with the most errors in Fig. 9.
This means that humans had the hardest time distinguish-
ing words with sustension on the initial diphone from those
without it.

The human studies produced DRT results that were
sorted according to acoustic dimension, and thus provided
very detailed error patterns for human listeners. The error
patterns for the synthetically generated corpora were very
similar to those of naturally spoken speech (Ghitza et al.,
2007) and produced error rates that were stable over differ-
ent noise SPL levels with sustention contributing more to
errors than any other acoustic dimension. The exception
to the above trend was the nasal sounds, which sounded
slightly metallic and had far fewer errors (approximately
zero errors) than similar tasks with humans on naturally
spoken speech. We believe this metallic quality provides
an unnatural cue that is exploited by the central auditory
system. Hence we omitted the nasality dimension from
the database. The error patterns along the other dimen-
sions were used as targets for the machine DRT mimic
described in the next section.
4.2. Machine tests: matching human performance

To find the parameter values of the closed-loop MBPNL
model, the amount of noise allowed per frequency band
was adjusted iteratively by tuning the DRW bounds and
other parameters discussed in Section 3 to find the model
settings that produced the best machine match to human
scores along each acoustic–phonetic dimension. Results
were computed using a single-template – one of the nine
SPL (50, 60, and 70 dB) and SNR (0, 5, and 10 dB) condi-
tions – spectrogram-like time–frequency representations of
the output of the auditory filters (each filter output is a hor-
izontal slice of the display, as shown in Figs. 5 and 8). For a
given test token, a mean-squared-error (MSE) L2-norm
distance was computed between the test token and the
two possible template tokens. This MSE was computed
according to the following formula:

MSEaðxÞ ¼
PNn

n¼1

PNi
i¼1½yxðn; iÞ � yaðn; iÞ�

2

NiN n
ð1aÞ

MSEbðxÞ ¼
PNn

n¼1

PNi
i¼1½yxðn; iÞ � ybðn; iÞ�

2

NiN n
ð1bÞ

Here n is the index of the time frame, i is the index of the
cochlear channels, Ni is the total number of frequency indi-
ces. Nn is the total number of time frames. ya(n,i) is the out-
put of the front-end when the first template token is input
to the system, yb (n,i) is the ouput of the front-end when the
second template token is the input, and yx(n,i) is the ouput
of the front-end when the test token is the input. For a gi-
ven test token, the template producing the smaller MSE
distance was selected as the simulated DRT response.
For example if MSEa(x) > MSEb(x), then the template di-
phone ‘‘b” was selected. Otherwise, template diphone ‘‘a”

was selected. The resulting scores for each DRT presenta-
tion were then compared to find how well the system
matched human performance.

For initial studies, the amount of noise power allowed
over the lower bound of the DRW was incremented in
1 dB steps, with a tolerance of 0.1% difference in noise
power. For later studies the amount of noise allowed over
the lower bound of the DRW was set to 2 dB, 6 dB, or
10 dB, with different combinations of level per frequency
band. The frequency bands examined were divided roughly
according to the first formant, second formant, and third
formant regions for clean speech. Specifically, the first fre-
quency band had channels with center frequency of 266–
844 Hz; the second frequency band had channels with cen-
ter frequency of 875–2359 Hz; and the final frequency band
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Fig. 9. Human performance on Voiers’ 2AFC DRT using synthetic speech created by the HLsyn speech synthesis system. Performance is broken down
into DRT dimensions having the attributes of voicing (VC), nasality (NS), sustension (ST), sibilation (SB), graveness (GV), and compactness (CM). +
Indiciates diphones that have the attribute and � indicate diphones that do not have the attribute. The grand mean is computed by averaging the percent
correct over all dimensions and +/� attributes. As SNR decreases, human performance decreases. Human errors moderately decrease as SPL is decreased
for all conditions but the 0dB SNR cases.

Table 1
Grand mean errors per noise condition for synthetic speech.

70 dB SPL 60 dB SPL 50 dB SPL

10 dB SNR 9.3 8.6 8.6
5 dB SNR 12.5 11.2 11.2
0 dB SNR 16.6 17.8 18.0
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examined had channels with center frequency of 2422–
5141 Hz.

A Chi-squared metric with a significance level of 95%
based on contingency table analysis of data (Zar, 1999)
was used to evaluate how closely machine performance
matched that of humans, and to tune the front-end audi-
tory model parameters. The settings that yielded the best
match to human in the Chi-squared sense were a DRW
lower bound of 65 dB, with noise allowed per frequency
band according to Table 2, with stretching, and with a
10-ms window.
Chi-squared analysis for the DRT mimic task, with the
closed-loop MBPNL model and template tokens at 60 dB
SPL � 10 dB SNR, are shown in Figs. 10 and 11a.
Fig. 10a shows performance averaged over SPL and SNR
conditions and Fig. 11 shows a breakdown per condition
(Fig. 10b – the averaged performance with an open-loop
MBPNL model – was added for comparison purposes).
The results suggest that the acoustic dimensions of voicing
minus and sustention minus were significantly different
from human for the majority of the conditions tested.
When examining Fig. 10, the negative bars for the voicing
minus and sustention minus categories imply that the
machine is performing better than humans. The reason
for this better machine performance is unknown; however
it could be due to the simple L2-norm MSE computation
between time and frequency spectrogram-like token repre-
sentations of our back-end. For the voicing category, tim-
ing differences between voiced and unvoiced sounds due to
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Fig. 10. Overall Chi-squared results for the system that yielded the best
match to humans. Negative bars indicate human errors exceed that of
machine. Positive bars indicate machine errors exceed that of humans. The
absolute value of each bar is the Chi-squared value for that acoustic
dimension. (a) Closed-loop MBPNL model. The performance on voicing-
minus and sustension-minus categories is much better than that of human
and significantly contributes to the overall Chi-squared metric. (b) Open-
loop MBPNL model without efferent control, added for comparison with
10(a) to show the improvement gained by adding efferent feedback. The
DRW is tuned in the same manner as the closed-loop MBPNL model,
chosen to match human performance as best as possible. Overall Chi-
squared metric and individual values indicate a large difference with
human.

Table 2
Noise allowed above the lower bound of the DRW per frequency band for
the system with the best match to human.

Frequency band CF Noise above DRW lower bound

266–844 Hz 10 dB
875–2359 Hz 6 dB
2422–5141 Hz 6 dB

678 D.P. Messing et al. / Speech Communication 51 (2009) 668–683
voiced onset times could make discrimination easier for the
machine model and hence bias results. For the sustension
category, continuants (such as/f/) which belong to the
ST+ category tend to occur in initial consonants that are
much more gradual and spread over time while obstruents
(such as/p/) which belong to the ST-category are much
more abrupt and compact over time. It is possible that
these timing differences are over-emphasized by the nature
of our simple MSE back-end comparison on time-aligned
speech, hence biasing performance in favor of the machine
for these two categories.

All other DRT acoustic categories have cues that are
less dependent on timing differences. Machine performance
over these categories also matched humans much better
with a few exceptions. The graveness plus category signifi-
cantly differs for the 60 dB SPL � 5 dB SNR condition,
and the graveness minus category significantly differs for
the 50 dB SPL � 10 dB SNR condition.

Despite the differences for a few acoustic categories and
for a few presentation conditions, the average Chi-squared
metric of 2.37 suggests that on average, machine perfor-
mance was close to human (and certainly within the Chi-
squared significance level of 3.84).

Results with all nine noise conditions used as the tem-
plate condition is displayed in Table 3. As these tables
show, the 60 dB SPL � 10 dB SNR template condition
produced the best Chi-squared metric results. However
all nine template choice results did not vary largely, reflect-
ing the stability of the closed-loop MBPNL representation.

5. Discussion

The main goal of this work was to describe a potential
model of the signal processing of the human auditory
periphery and demonstrate how several of the modeled
non-linear operations of the system can be used to develop
a machine that improves our capability to predict human
performance in additive white noise. One of the key non-
linear interactions of our system that is regulated by effer-
ent-inspired feedback control is that of the MPBNL gain
versus the lower bound of the DRW. Besides affecting filter
shapes in response of noise, this interaction aids in making
the output more consistent. In part, this is due to the nor-
malizing effect that efferent control has on the output: it
makes outputs fall into the DRW of interest and be consis-
tent across input levels. However it also yields a processing
advantage across SNR levels that traditional linear pro-
cessing does not provide: at low noise levels, the efferent
GAIN parameter is high, making the filters more respon-
sive to small amplitude signals while the high amplitude
signal response is kept roughly the same (as described in
Fig. 2). This in turn amplifies small amplitude sounds such
as some transients in consonants, which may be very useful
for speech recognition in environments with low levels of
noise. At high noise levels, the gain is low, making the fil-
ters much less responsive to small amplitude signals. Hence
smaller short-time noise transients are attenuated and
effectively masked below our DRW rate window of inter-
est. At these higher noise levels, this noise masking effect
allows the higher SNR regions of the speech signal to
emerge from the noise background. This effectively yields
an ‘‘unmasking” of sounds in noisy backgrounds, similar
to the affect Ferry and Meddis (2007) describe in their
work and that of (Dolan and Nuttal, 1988; Kawase et
al., 1993). This overall efferent effect yields improved per-
formance that matches humans better than a linear system,
such as a normalized-input gammatone filter system (see
Appendix).

By focusing on synthetic speech we were able to make
time-aligned diphone comparisons, which greatly
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Fig. 11. Detailed Chi-squared metric results computed separately for each noise condition for the system that yielded the best match to humans. The noise
condition is specificed in each panel by the SPL/SNR levels. The machine performance on a few acoustic dimensions, especially voicing-minus and
sustension-minus, is significantly better than human performance. Overall the Chi-squared metrics here indicate that this system was a much better match
than any other we had evaluated.

Table 3
Optimal Chi-squared metric values as a function of template condition
with smoothing window length set to 10 ms. The 60 dB SPL � 10 dB SNR
condition yields the best Chi-squared metric value.

70 dB SPL 60 dB SPL 50 dB SPL

10 dB SNR 3.9069 2.3731 2.7834
5 dB SNR 2.8635 3.2876 2.9221
0 dB SNR 7.5620 7.5822 8.1114
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simplified the back-end classifier. However by using syn-
thetic speech several imperfections may have been intro-
duced such as the metallic sound of the nasals.
Furthermore, it is possible that temporal features were
exaggerated, making machine discrimination easier than
it should be. For example, the time-aligned nature of the
speech might have made it easier for the MSE machine
computation in the back-end to distinguish the duration
of the initial consonant in the sustention category or the
voice onset time for the voiced category (both of which
are cues for those acoustic dimensions), hence resulting in
better machine results. Despite this, overall machine results
matched humans in a Chi-squared test and the main goals
of this work were accomplished.

An interesting avenue of future work could involve
exploring the use of the closed-loop MBPNL system for
automatic speech recognition (ASR). Due to the nature
of the noise-responsive feedback, the closed-loop system
produces spectrograms that fluctuate less with changes
in noise intensity and SNR compared to spectrograms
produced by the open-loop system. This property is desir-
able for stabilizing the performance of our template-
matching operation (or any other statistical pattern
recognition method, e.g. HMM) under varying noise con-
ditions. Another point is noteworthy: unlike the case of
ASR, where we aim at minimum error rate, here we
aimed at matching human error patterns. Towards this
end, we had to inject a certain amount of noise into
the DRW (see Section 4.2). Reducing the noise intensity
in the DRW to zero should improve recognition
results.
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6. Summary

In this paper we have revised current models of auditory
periphery by including the role of the descending pathway in
making the cochlear response to speech sounds robust to
degradation in acoustic conditions. We have qualitatively
demonstrated the system’s ability to produce spectrograms
of noisy speech samples that are more consistent with spec-
trograms of speech in quiet than are spectrograms produced
by open-loop models of the auditory periphery. We have
also evaluated the ability of this model to preserve phonetic
information quantitatively, by using it as a front-end in a
machine designed to mimic human confusion patterns to
initial consonants in noise. Potential applications include
(1) enabling a diagnostic assessment of speech intelligibility
by using the efferent-inspired model of the auditory periph-
ery integrated with perception-based template matching,
and (2) improving the performance of automatic speech rec-
ognition systems in acoustically adverse conditions.

Acknowledgement

This work was sponsored by the US Air Force Office of
Scientific Research (contracts F49620-03-C-0051 and
FA9550-05-C-0032) and by NIH Grant R01-DC7152.

Appendix A.

The purpose of this Appendix is to highlight differences
between the closed-loop MBPNL model and the standard,
open-loop Gammatone model (Patterson et al., 1995). In
implementing the open-loop Gammatone model we used
a bank of overlapping filters (developed by Slaney, 1993)
uniformly distributed along the ERB scale, four channels
per ERB (same distribution as in the MBPNL model, see
Section 3.2). Each filter was followed by a generic model
of the Inner Hair Cell – half-wave rectification followed
by low-pass filtering, representing the reduction of syn-
chrony with CF.

The closed-loop MBPNL model and the open-loop
Gammatone model are different in two major ways, in
the overall architecture – open-loop vs. closed-loop, and
in the type of filterbank – linear vs. nonlinear. In Section
A.1 we examine the role of the filterbank by comparing
the Gammatone (linear) with the MBPNL (nonlinear)
filterbanks, both in an open-loop configuration. In Section
A.2 we comment on the advantage in using a closed-loop
configuration. Our comparisons of the various models were
conducted by inspecting spectrograms (visually) and by
examining numerical chi-squared results, in the same man-
ner as in the body of this paper.

A.1. Gammatone (linear) vs. MBPNL (nonlinear)

filterbanks in open-loop configuration

Here we compare the Gammatone and the MBPNL filt-
erbanks, both without amplitude normalization at the
input. Figs. 12 and 5 (a) show spectrograms of the Gamm-
atone filterbank output and the open-loop MBPNL filter-
bank output, respectively, in different SPL and SNR
conditions. The spectrographic display exhibits inconsis-
tency across SPL � SNR conditions, for both models,
reflecting the wide signal intensity dynamic range. Note
that this inconsistency is somewhat reduced with the
MBPNL due to the nonlinear nature of the MBPNL. (As
shown in Fig. 2, upper left plot, for a dynamic range of
100dB at the input, the dynamic range at the output of
the MBPNL is reduced by 37dB.)

This informal, visual, observation is quantified by mea-
suring the machine performance on the DRT mimic with a
Gammatone- vs. open-loop MBPNL- based machines,
shown in Figs. 13 and 10 a,b, respectively. For both cases,
templates were chosen to optimize the Chi-squared metric,
70dB SPL � 0 dB SNR for the Gammatone, 60dB
SPL � 10 dB SNR for the open-loop MBPNL. For the
Gammatone model (Fig. 13a), all chi-square bars are posi-
tive, indicating machine errors exceed that of humans, and
all bars are grey, indicating that the difference between
machine and human errors are greater than the signifi-
cance threshold of 3.841. A similar trend is observed for
the open-loop MBPNL model (Fig. 10b): all chi-square
bars are positive except the non-voiced (VC-) condition,
and all Chi-square bars are grey except the sustained
(ST+) condition. In agreement, the average chi-squared
metric is 23.3 for the open-loop MBPNL and 34.7 for
the Gammatone. Although the open-loop MBPNL
matches human performance better than the Gammatone
system, neither model matches human performance
well.

A.2. Open-loop Gammatone vs. closed-loop MBPNL

As suggested in the body of the paper, the closed-loop
configuration results in a greater consistency at the output
display across SPL � SNR conditions (Fig. 8). Fig. 12b
shows the spectrographic display of the open-loop Gamm-
atone model with amplitude normalization at the input.
Normalization at the input improves consistency at the
output of the system: output displays vary slightly across
SNR and are very stable across SPL.

This improvement is reflected in the machine perfor-
mance on the DRT mimic, shown in Figs. 10 and 13a
and b. For both cases, templates were chosen to optimize
the Chi-squared metric, 70 dB SPL � 5 dB SNR for the
input-normalized Gammatone, 60 dB SPL � 10 dB SNR
for the closed-loop MBPNL. For the input-normalized
Gammatone system, sibilation-minus (ST-)shows the larg-
est human–machine mismatch. Sustension and compact-
ness-plus (CM+) have Chi-squared values indicating a
similar human–machine performance. For the input-
normalized Gammatone, the average Chi-squared metric
per acoustic dimension is 6.5884 – a worse match to human
performance compared to the closed-loop MBPNL
performance (Fig. 10a).



Fig. 12. Simulated IHC response to diphone/ja/, (a) open-loop Gammatone model using an 10-ms smoothing window without amplitude normalization at
the input. Like the MBPNL systems, a total of 96 filters were used. A large inconsistency in the simulated IHC response spectrum is observed across
varying noise intensity and SNR levels and (b) open-loop Gammatone model using an 8-ms smoothing window with amplitude normalization at the input.
Compared to 12a, much better consistency is observed.
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Fig. 13. Overall Chi-squared results for a linear Gammatone system that
yielded the best match to humans (a) without input normalization:
Overall, for the Gammatone model, machine errors significantly exceed
human ones in all acoustic dimensions and (b) with normalized input:
Machine errors exceed human ones in all acoustic dimensions but voicing-
minus and sustension-minus. Only the sustention (ST) and compactness-
plus (CM+) dimensions produce average results that do not exceed the
significance threshold. The final normalized-gammatone results provide a
much worse match to human performance than the MBPNL results of
Fig. 10.
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